Gravitational Wave Memory: A New Approach to Study Modified Gravity

نویسندگان

  • Song Ming Du
  • Atsushi Nishizawa
چکیده

It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the non-linear, or Christodoulou memory. These effects, especially the latter, depend on the specific form of Einstein equation. It can then be speculated that in modified theories of gravity, the memory can differ from the GR prediction, and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of gravitational wave, respectively. In particular, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses, and formulate a detection strategy for the S memory, which can be singled out from tensor gravitational waves. We show that (i) the S memory exists even in spherical symmetry, and is observable under current model constraints, and (ii) while the T memory is usually much weaker than the S memory, it can become comparable in the case of spontaneous scalarization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation

In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotat...

متن کامل

Local stability criterion for self-gravitating disks in modified gravity

We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...

متن کامل

Study of a Restricted Modified Gravity on astrophysical and cosmological scales

p { margin-bottom: 0in; direction: rtl; text-align: right; }p.ctl { font-size: 12pt; }a:link { color: rgb(0, 0, 255); } In this paper, we study a restricted modified gravity in which diffeomorphism symmetry is broken. We investigate the astrophysical implications of the model by using the corresponding gravitational potential. By using the weight function of the weak lensing , for the model,...

متن کامل

Nonlinear Gravitational-wave Memory from Binary Black Hole Mergers

Some astrophysical sources of gravitational-waves can produce a “memory effect,” which causes a permanent displacement of the test masses in a freely-falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor’s contribution to the distant gravitational-wave field. This nonlinea...

متن کامل

At the Interface of Quantum and Gravitational Realms

In this talk I review a series of recent conceptual developments at the interface of the quantum and gravitational realms. Wherever possible, I comment on the possibility to probe the interface experimentally. It is concluded that the underlying spacetime for a quantum theory of gravity must be non-commutative, that wave-particle duality suffers significant modification at the Planck scale, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016